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Executive Summary 
 

 We develop a model-based processor (MBP) for a micro-cantilever array sensor to detect target 
species in solution.  After discussing the generalized framework for this problem, we develop the specific 
model used in this study. We perform a proof-of-concept experiment, fit the model parameters to the 
measured data and use them to develop a Gauss-Markov simulation. We then investigate two cases of 
interest: (1) averaged deflection data, and (2) multi-channel data. In both cases the evaluation proceeds by 
first performing a model-based parameter estimation to extract the model parameters, next performing a 
Gauss-Markov simulation, designing the optimal MBP and finally applying it to measured experimental 
data. The simulation is used to evaluate the performance of the MBP in the multi-channel case and compare 
it to a “smoother” (“averager”) typically used in this application. It was shown that the MBP not only 
provides a significant gain (~ 80dB) in signal-to-noise ratio (SNR), but also consistently outperforms the 
smoother by 40-60 dB. Finally, we apply the processor to the smoothed experimental data and demonstrate 
its capability for chemical detection.  The MBP performs quite well, though it includes a correctable 
systematic bias error. 
 
 The project’s primary accomplishment was the successful application of model-based processing 
to signals from micro-cantilever arrays:  40-60 dB improvement vs. the smoother algorithm was 
demonstrated.  This result was achieved through the development of appropriate mathematical descriptions 
for the chemical and mechanical phenomena, and incorporation of these descriptions directly into the 
model-based signal processor.  A significant challenge was the development of the framework which would 
maximize the usefulness of the signal processing algorithms while ensuring the accuracy of the 
mathematical description of the chemical-mechanical signal.  Experimentally, the difficulty was to identify 
and characterize the non-target signals present in the measurement system.  In the future, these signals will 
limit the ability of the sensor to detect very small quantities of chemicals generated by nuclear processing. 
In this project, it became necessary to make use of a model system, mercaptoethanol, which created a large, 
reproducible signal that could be readily analyzed with the model-based processor. Further, redundant 
cantilevers were examined exclusively:  all levers were nominally identically functionalized, and no 
“control” levers were used that did not react to the mercaptoethanol signal. To demonstrate the full utility 
of the MBP for chemical sensing, the logical and necessary next steps are (1) verify the physical models 
used in this study for a variety of solvents and target molecules (this data has already been obtained as part 
of this study)  (2) make use of control levers, and (3) extend the experimental library to include low 
concentrations of chemical targets of practical interest for sensing nuclear processes. 
 
 
Outline: 
 
1.   Introduction 
2.  Experimental description 
3.  Physical chemistry 
4.  Mechanical modeling 
5.  Signal processing 
6.  Summary 
7. Appendix A: Derivation of adsorption and desorption parameters 
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1.  Introduction:  Cantilever Sensor Arrays  
 

Micro-machined cantilevers can function as detection devices when one side is 
fabricated to be chemically distinct from the other, as shown in Fig. 1. 
 
 functionalized side 0.9 µm thick 5 µm thick  
 
 

Lever chip   
 500 µm  
 
 
 
Fig. 1:  Side view of typical micro-machined cantilever showing cantilever dimensions: 
0.9 microns thick, 500 microns long (and 100 microns wide – not shown). To function as 
a sensor, the top of the cantilever (“functionalized side”) must be made to be chemically 
distinct from the bottom. 
 

Functionalization can be accomplished, for example, by evaporating a thin (~10’s 
of nm) film of metal such as Au on the top of the chip, then immersing the cantilever chip 
in a “probe” chemical that will bind preferentially to the Au thin film.  The lever acts as a 
sensor when it is exposed to a second, “target” chemical that reacts with the probe, since 
the reaction causes a free energy change that induces a surface stress at the cantilever 
surface. Differential surface stress, σ∆ , in turn, induces a deflection of the cantilever that 
can be measured optically or electronically 
 

The total free energy change at the surface, ∆G, can described as the free energy 
due to four contributions: ∆GCANT, the mechanical energy associated with bending the 
cantilever, ∆GPOLY, free energy resulting from macromolecular conformational entropy 
and nonelectrostatic interactions, ∆GOSM, free energy from osmotic pressure of 
counterions near the surface of the cantilever, ∆GELEC, the electrostatic free energy [1]. 
 
Eq. 1 ∆G = ∆GCANT + ∆GPOLY + ∆GOSM + ∆GELEC  
 
 

The free energy change is related to ∆σ, the stress difference between top and 
bottom side of the ith cantilever by: 
 
Eq. 2 ( ) ( ) ( )i i it G t t∆σ = ∆ Γ   
 
where ∆G has units of J/mole and is the sum of all of the contributions to free energy 
changes at the surface of the ith  cantilever, Γi(t)  is the surface concentration of the 
species of interest (in numbers of species per cm2) on the surface of the ith cantilever 
[2,3]. 
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The surface concentration of the interacting molecules, Γi(t), is estimated using 

Langmuir kinetics, e.g., the first-order Langmuir kinetics has the following form: 
 

Eq. 3                                    ( ) ( ) max( ) 1a d

d
k c t k

dt
Θ

= − Θ − Γ Θ  

 

Here Θ is ( )
max

tΓ
Γ

, c(t) is the bulk concentration of the target molecule in solution in moles 

per liter, or [M], ka is the adsorption rate constant in [M]-1 s-1, kd is the desorption rate 
constant in cm2 #species-1 s-1, and Γmax is the maximum possible surface concentration of 
the species of interest in actual numbers of species per cm2.  Please see Appendix A for a 
more detailed explanation of Eq. 3.  
 

Finally, differential surface stress in the cantilever induces a deflection on the ith 
cantilever, ∆zi(t) , according to Stoney’s equation: 
 

Eq. 4 4( ) ( )
3(1 )i

lt k
W t

σ
ν

∆ = ∆
− × rect iz t   

 
where ν is Poisson’s ratio, l, W and t are the rectangular cantilever length, width and 
thickness, respectively, krect is the cantilever spring constant. 
 

Cantilevers can function as effective sensors in liquid or gas.  In a gas 
environment, target molecules bind to an oscillating cantilever and produce resonant 
frequency shifts that can be directly linked to the mass of the target.  Resonant frequency 
shift measurements are difficult to measure in liquid due to damping effects, however.  
Cantilever sensors in liquid therefore generally rely on measured DC deflection signals of 
non-oscillating levers.  This report pertains primarily to cantilever sensors operating in 
liquids, although some aspects of the signal processing algorithm may be applicable to 
cantilever arrays in gas environments as well. 
 

A limitation on cantilever sensors in liquid is that their signal-to-noise ratio (SNR) 
is rather low, often 5:1 or smaller.  SNR is expected to be significantly lower in many 
operational environments of interest.  Further, the reliability of fielded cantilever sensors 
ultimately depends on their being incorporated into arrays, which increase system 
complexity and can make response interpretation difficult.  However, these difficulties 
are exactly the type that can be overcome with effective signal extraction techniques such 
as the model-based approach, the subject of this invention.  In this report, the model-
based signal extraction system for cantilever arrays is described that takes advantage of 
the fact that multiple redundant signals are available to the signal processing algorithm. 
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2.  Experimental description 
 

In this section, the cantilever detection experimental apparatus will be described, 
together with results that demonstrate detection of sulfur-terminated molecules with Au-
coated levers.  Non-chemical signals are measured and characterized so that these can be 
separated from the chemical signals of interest. 
 
2.1 Experimental description:   effects of refractive index differences 
 

An eight-cantilever array chip, obtained from Veeco Instruments, was used for 
this experiment.   Actual lever deflections were not measured; the goal was to determine 
what variability exists in the Scentris optical detection system when fluids of differing 
indices of refraction are used in the flow cell.  To accomplish this, apparent deflections 
were observed as light beams were focused on the rigid base of the chip.  The Scentris 
system uses super-luminescent diodes (SLD) to generate non-monochromatic light, 
which is reflected by the cantilevers into a position-sensitive detector optimized for light 
with an average wavelength of about 940 nm (Fig. 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2:  Scentris optical detection system. (Diagram from Scentris Application Notes, 
Veeco Instruments.) 
 

The lever chip had 1.5 nm Ti and 20 nm Au evaporated onto the surface.  
Immediately prior to being loaded into the flow cell, the chip was cleaned in piranha (1:3, 
hydrogen peroxide: sulfuric acid) for 20 minutes, then rinsed in 10 ml water for ~ 10 min.  
The chip was then placed directly into the freshly-cleaned flow cell, which was flooded 
with water and sealed. 
 

Light was focused on the chip at the base of the cantilever, as shown in Figs. 3 
and 4.  It appears that the Au surface may have been damaged somewhat by the extended 
piranha cleaning (some gold delamination appears to have occurred), but the areas used 
for this experiment were smooth and reflective.  The actual position of the light spot on 
the cantilever is also visible as a white spot in Fig. 3.  The positions all of the light spots 
used during the experiments are shown by green circles in Fig. 3, and by a green line in 
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the side view of the chip shown in Fig. 4.  Note from Fig. 4 that the “levers” are actually 
525 microns thick under the light spots as they were positioned for these measurements. 
Due to the fact that there is a damaged area on the surface of the third lever from the top 
in Fig. 3, this lever was not used for these experiments. 

 
 
 
 

 
 

Lever 8 (SW #) 

Lever 7 (SW #) 

Lever 6 (SW #) 

Lever 5 (SW #) 

Lever 4 (SW #) 

Lever 3 (SW #) 

Lever 2 (SW #) 

Lever 1 (SW #) 

LE 

 
 
 
 
 
 Lever 1 (SW #) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3:  Top view of light spot position and cantilevers; levers are numbered according to 
software (SW) scheme, reverse of etched numbers on chip. 
 
 
 
 
 
 
 
Fig. 4:  Side view of lever chip showing SLD spot position in green. 
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The Scentris software requires that an “effective length” for the cantilever be 

entered so that deflection signals may be appropriately calibrated.  For typical Scentris 
experiments, this effective length is measured from an etched mark on the top of the chip 
to the center of the light spot, shown schematically in Fig. 3 with the light spot 
represented by a yellow dot. (The etched mark is under the red line on the right.) For this 
experiment, however, the effective length is not physically meaningful since the light 
spot is not being positioned on the flexible part of the cantilever.  However, an effective 
length of 460 nm was entered into the software so that the magnitude of the calculated 
“deflection” signals might be appropriately interpreted when comparing with actual lever 
deflection experiments, where effective lever lengths of about 460 nm are common. 
 

In a first test, ~ 1 ml 5% mercaptoethanol (refractive index:  1.50) in water 
(refractive index:  1.33) was manually injected into through the 50 microliter flow cell in 
about 10 sec.  An apparent deflection occurred, as shown in Fig. 5.  The magnitude of the 
apparent deflection varied from less than 10 nm for most levers to 20 nm for one lever. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5:  Effect of injecting 5% mercaptoethanol in water into the flow cell which 
previously contained pure water.  Nanometer values in the legend are the initial vertical 
position of the “levers” as measured by the Scentris; all subsequent deflections are 
relative to this value.   
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In Fig. 6, this experiment is repeated several times; the signals are repeatable and 
reversible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6:  5% mercaptoethanol in water causes apparent deflections in optical measurement 
system that are repeatable. 
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In a second test, pure ethanol (refractive index:  1.36) was flowed into the cell.  
This caused causes longer-term transients (possibly due to incomplete mixing/exchange 
in the flow cell) and somewhat larger apparent deflections for some levers, as shown in 
Fig.  7. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7:  Longer transients and larger apparent deflections (up to ~ 50 nm, downward) for 
some levers occur when pure ethanol replaces water in the flow cell. 
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Finally, it was observed that the optical deflection system is sensitive to ambient 
light, even with the opaque hood in place over the test volume.  Fig. 8 shows the effects 
of turning on and off the fluorescent room lights. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8:  Small apparent deflections occur when room lights are turned on and off, even 
with opaque hood in place over test volume.
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2.2  Experimental description:   deflection due to mercaptoethanol  
 

Experiments were performed with 750 µm levers, which were coated by 
evaporation with 1.5 nm Ti and 20 nm Au.  Levers were cleaned in piranha (3:1 sulfuric 
acid: hydrogen peroxide) for ~5 minutes, with gentle agitation, then rinsed in 10 ml water 
for ~40 minutes before being loaded directly into the freshly-cleaned flow cell, which 
was flooded immediately with purified water and sealed. 
 

The effective length of the levers was 520 microns, as shown in Fig. 9.  Lever 6 
was broken during chip handling. 
 
 

Lever 8 (SW #) 

Lever 7 (SW #) 

Lever 6 (SW #) 

Lever 5 (SW #) 

Lever 4 (SW #) 

Lever 3 (SW #) 

Lever 2 (SW #) 

Lever 1 (SW #) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9:  Scentris chip used for mercaptoethanol desorption experiments. 
 

Constant flow experiments in the 50 microliter cell were performed at 50 
microliters/min, alternating purified water and 5% mercaptoethanol in water.  Results of 
the initial steps in the experiment are shown in Fig. 10.  Nanometer values in the legend 
are the initial vertical position of the levers as measured by the Scentris; all subsequent 
deflections are relative to this value for each lever.  Note that levers with similar initial 
deflection values tend to drift at similar rates throughout the experiment. The reasons for 
this behavior are not yet clear; it could be related to the mechanical properties of the 
levers, or it could be an artifact of the optical detection system. 
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Fig. 10:  Initial stages of mercaptoethanol desorption experiment. 
 

An initial positive (downward, away from the Au side) deflection occurs 
following the first injection of 5% 2-mercaptoethanol in water.  This behavior is 
consistent with an increase in compressive stress in the cantilevers. This initial positive 
deflection has been observed repeatedly in previous experiments with mercaptoethanol 
and Au-coated levers.  Subsequent binding of mercaptoethanol to the Au surface induces 
tensile stresses in the lever, manifested by a negative (upward, toward the Au) deflection 
of the levers.  
 

When water is flowed through the cell, additional compressive stress is developed 
in the cantilevers; this is shown in two events at ~8200 sec and 12000 sec in Fig. 10.  In 
Fig. 11, the water/5% mercaptoethanol exchange is repeated twice more, and behavior is 
consistent:  levers bend downward (decrease in compressive stress) when 
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mercaptoethanol is introduced, then relax upward (increase in compressive stress) when 
pure water flows into the cell.  Note that the levers never fully relax upward to their 
initial positions, indicating that significant numbers of mercaptoethanol molecules remain 
bound to the Au lever surfaces even after rinsing for long periods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11:  Final stages of mercaptoethanol desorption experiment.  
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2.3  Experimental description:  effects of fluid flow 
 

750 micron long Au levers (1.5 nm Ti, 20 nm Au, by evaporation), on the same 
chip used for the mercaptoethanol experiments previously described, were cleaned in 
piranha (3:1 sulfuric acid: hydrogen peroxide) for 5 minutes, then rinsed in 10 ml water 
for 55 minutes. They were loaded directly into freshly-cleaned flow cell, which was 
flooded with water.  The SLD spot positions were set to maintain the levers’ effective 
length near 520 µm. As can be seen in Fig. 12, some pitting of the Au surface may have 
occurred since the previous experiment, possibly due to the piranha cleaning process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12:  Levers used for ethanol desorption and flow rate experiments 
 

Constant flow experiments were initially performed in the 50 microliter flow cell.  
Water and 5% ethanol in water were exchanged several times.  Relative to previously-
observed deflections induced by 5% mercaptoethanol in water, the magnitude of these 
deflections were small, as shown in Fig. 13.  The behavior of the levers following each 
5% ethanol injection was consistent and reproducible.  These experiments demonstrate 
that the large deflections observed with the mercaptoethanol in previous experiments 
were likely caused mainly by molecules adsorbing or desorbing from the surface, as 
opposed to being caused by changes in water-Au surface interactions mediated by 
ethanol.  
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Fig. 13:  Constant flow experiments with water and 5% ethanol in water. 
 

It is interesting to note in Fig. 13 that there is an initial positive deflection of the 
levers by ~175 nm when flow is initiated at 50 microliters/min.  This behavior is 
important to understand so that flow-induced deflection is not mistaken for deflection 
induced by chemical changes at the lever surface.  Subsequent experiments were 
therefore performed to learn more about these flow-induced deflections.  In Figs. 14 and 
15, deflections are shown as the flow rate is slowed from 50 to 2 microliters/min. 
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Fig. 14:  Effect of reducing water flow rate from 50 to 2 microliters/min. 
 

The levers drift downward, then back up after the flow rate is stabilized at 2 
microliters/min for an extended period.  Fig. 15 shows an expanded view of the average 
lever deflection as the flow rate is changed from 20 to 2 microliters/min. 
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Fig. 15:  Average lever deflection as water flow rate is decreased to 2 microliters/min 
from 20 microliters/min. 
 

In Fig. 16, some deviations occur in the downward drift trend as the flow is 
reduced, but these are relatively small.  Fig. 16 shows the effect of increasing flow rate 
from 2 to 200 microliters/min, then back to 2 microliters/min.  It is difficult to generalize 
about the direction of deflection induced by increased or decreased flow.  Figs 14 and 15 
show downward deflection as flow rate is decreased, while Fig 16 shows downward 
deflection as flow rate is increased.  In general, however, larger flow rates do seem to 
cause larger deflections, and when the flow rate is stabilized for extended periods at low 
values (<5 microliters/min), the levers tend to drift upward for this experimental set. 
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Fig. 16:  Lever deflections as water flow rates are changed. 
 

Fast injection conditions are of particular interest for detection experiments.  
Ideally, chemicals can be introduced rapidly into the fluid cell so that the resulting 
behavior of the levers can be characterized starting at a single time (as opposed to the 
case when chemicals are slowly flowed into the cell over minutes or hours). Also, since 
high flow rates themselves can cause lever deflections, the ideal chemical detection 
experiment would occur under low- or no-flow conditions.  Data in Fig. 17 show the 
results of changing flow rates briefly from very low levels (2 microliters/min), briefly to 
high levels for injection (100 or 200 microliters/min), then back to low levels for 
detection. 
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Fig. 17:  Effect of increasing water flow rates briefly for simulated injection of a 
chemical of interest into the flow cell; the initial flow rate is 2 microliters/min. 
 

As can be seen in Fig. 17, increasing flow rates to 100 or 200 microliters/min 
from 2 microliters/min causes a large, immediate upward deflection.  More problematic 
for detection experiments, is that the fast changes can cause extended relaxation periods 
(1000’s of seconds) during which the levers drift significantly.   
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2.4  Experimental description:  temperature and chemical effects 
 

To calibrate the deflection of Scentris cantilevers, it is helpful to use a 
temperature stimulus which can be measured independently.  As will be described in 
Section 4, the spring constant of the cantilever can be calculated based upon the known 
dimensions of the cantilever and the observed deflection response of the cantilever to an 
independently measured temperature increase. As can be seen in Fig. 18, critical 
dimensions of the cantilever can be determined by scanning electron microscopy (SEM). 
 

 
 
 
Fig. 18:  SEM image of cantilevers showing sensitive measurement of the cantilever 
thickness. 
 

Here, we describe a calibration experiment in which 500-micron long, Au-coated 
levers were exposed to a temperature pulse, then a chemical stimulus in the form of a 1% 
(by volume) concentration of mercaptoethanol in pure water, and finally a second 
temperature pulse. 
 

Levers were coated with 20 nm of evaporated Au, and cleaned as described 
previously with piranha immediately before being loaded into the water-filled 50 
microliter flow cell.  Except for brief pauses to exchange syringes in the syringe pump, 
the entire experiment was performed at a constant flow rate of 20 microliter/min.  The 
results of the experiment are shown in Fig. 19. 
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Fig. 19:  Deflection of cantilever due to temperature and chemical stimuli. 
 

The results of this experiment will be discussed in detail in Sections 3-5, where 
the deflections are modeled and quantitatively analyzed to extract chemical parameters, 
such as the absorption constant, that are necessary for detection applications.   
  

In order to ensure that experimental results are not being affected by uncontrolled 
variables, and that modeling assumptions are realistic, a large data set was obtained with 
various concentrations, target molecules and solvents.  The experimental parameters of 
these experiments are summarized in Table 1, and representative results of the 
experimental data set are shown in Figs. 20 and 21. 
 
Table 1:  Number of experiments for several experimental conditions: 
Solvent:  Water Ethanol Ethanol 
Solute:  Mercaptoethanol Mercaptoethanol Hexadecane 
Concentration (M): 1.E-04 0 0 2 
 1.E-03 0 6 3 
 1.E-02 1 1 0 
 1.E-01 0 3 0 
 1.E+00 3 2 0 
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Fig. 20:  Experimental results for 1 mM hexadecane in ethanol. 
 

 

1500

1000

500

0

-500

-1000

De
fle

ct
io

n 
(n

m
)

80x103757065605550
Time (s)

10

8

6

4

2

0

-2

Delta tem
p (C)

040916_Au_Ethanol_000:  10 mM mercaptoethanol in ethanol

Flow 10 mM mercaptoethanol
flow pure ethanol

 
Fig. 21:  Experimental results for 10 mM mercaptoethanol in ethanol. 
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3.  Physical chemistry 
 

In this section, we describe how we predict changes in surface stress as a function 
of surface loading.   The overall analysis in the modeling begins with Stoney’s equation 
(Eq. 4), which states that the deflection of the cantilever is directly proportional to the 
difference in surface stress on the cantilever surface.   The physical system is shown 
below in Fig. 22. 
 

Fig.  22:  Flow over a cantilever with polymer, green species, depositing on the surface of 
a cantilever. The deposited polymer self-assembles and the assembled species induces a 
lateral stress that causes a stress imbalance between the top and bottom surfaces, i.e., σ+ 
and σ-. 

 

 
This stress differential constitutes the signal.  We follow the approach as 

described by Lavrik et al. [3] to relate the surface stress difference to the surface coverage 
and the free energy of adsorption (Eq. 2).  What remains is to develop physical models 
for Γ(t) and ∆G . 
 
 To estimate the rate of change of surface concentration, Γ(t), we employ a 
modified form of Eq. 3 by re-defining a rate of desorption,  , where .  With 
this new definition, Eq. 3 becomes: 

'
dk '

maxd dk k= Γ

 
 
 

 22



 
Eq. 5 

( ) ( ) '( ) 1a d

d
k c t k

dt
Θ

= − Θ − Θ  

 
 
All terms are as described above in Eq. 3 with the exception of . Note that Langmuir 
kinetic equations have been presented in various forms in the open literature. The above 
form, Eq. 5, was chosen to enable a one to one comparison between rate constants 
predicted by the MBP presented here and those reported in the literature [4,5,6].  Eq. 3 
above, however, is based on the rigorous analysis presented in Appendix A. 

'
dk

 
In solving the Langmuir kinetics, we hold the concentration as a constant in Eq. 3 

and then build in the dynamic nature of the signal through the solution to a decoupled 
differential equation for the dynamics of the bulk phase signal concentration (see Eq. 7).  
This is justified since the time scales between surface adsorption/desorption and bulk-
signal concentration are sufficiently disparate.   
 

Once the input signal, c0, is turned off we again fit the desorption process with an 
nth order Langmuir desorption mode: 
 
 
Eq. 6 

( ) ( )n
d

d
k

dt
Θ

= − Θ

 
The fit to the actual desorption data revealed a third-order dependence on the 
dimensionless surface concentration, or n = 3. Desorption processes are typically 
modeled with a first or second order model to extract kd; however, in our case, the best fit 
was with a third order model; consequently, the third order dependence on dimensionless 
surface concentration was not expected. This fact that the best fit for the desorption 
behavior was with n>1 suggests that there may be a distribution of activation energies 
associated with the desorption process (see Appendix A).  
 

To account for the dynamics of the system, more specifically the transient nature 
of the system owing to fluid flow rates, we developed a dynamic estimate of the bulk 
species concentration based on a modified stirred tank reactor system, see Fig. 23 below.  
This mathematical description of the flow cell is a useful approximation for observing 
time-dependent fluidic behavior, but experimental evidence suggests that at the low flow 
rates applied in the 50 ul flow cell experiments described here (50 microliters/min and 
smaller), flow is in fact relatively laminar.  Levers on the outside of the array, for 
example, were consistently observed to react to chemical signals a few seconds before the 
inner levers.  If the system acted as a true stirred tank, all levers would react to chemical 
stimuli simultaneously. 
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Fig. 23:  Model flow cell for cantilever array. Qin and Qout are the volumetric flow rates 
in and out of the cantilever array chamber. ci and c are the input concentration and the 
concentration within the volume for perfect mixing. 

The resulting equation we used to predict the bulk, target species concentration 
was the following form: 
 
Eq. 7 

ere  is the time dependent concentration of our target species, ci, is the input signal 

( ) ( ) ( ) ( ){ }( ) / ( ) /
0( ) 1 1ON ONt t t t

ON OFFc t c e H t t e H t t− − τ − − τ= − − − − −

 
 
H  ( )c t
or concentration, tON is the time at which the signal is turned on and tOFF is the time when 

the signal is turned off and τ, 
V

τ=  , is the residence time of the fluid in the cantilever 

when the argument is negative and one when it is positive. For the given system and 
using half of the chamber volume, 75s

Q
array volume, V. H(t) here is the Heaviside step function; i.e. the function that is zero 

τ ≈ , and the resulting response or concentratio
the chamber, for the gross approxim of perfect mixing, is shown below in Fig. 24. 
 

n in 
ation 
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Fig. 24:  Bulk concentration in cantilever array flow chamber. Given that the cantilever 
array is at the center of the chamber, predictions were made for the entire chamber volume, 
blue curve, and for half of the chamber volume, brown curve. The broad black line 
represents the time on and the time off of the signal. 

All of these features were built into the model based signal processor (Section 5), 
and the

free energy for adsorption,

 signal based processor/estimator was used to fit these coupled equations predict 
the optimal values for ka, kd and Γmax.  With these parameters specified, we calculate the 

ln ak⎛ ⎞

cantilever response to thermal effects, or coefficient of thermal expansion effects, 
be described in Section 4. 
 

d

G RT
k

∆ = − ⎜ ⎟
⎝ ⎠

[4,6].  For any target species, we can then 

fit to get the appropriate adsorption parameters. Furthermore, we also built in the 
as will 

.  Mechanical modeling 

 this section we describe the modeling of micromachined cantilevers using finite 

.1  Finite element model of a complete array  

A finite element model of an eight-cantilever array was created to conduct 
simulat  

fixed 

4
 
In
element methods and closed form analytical expressions. The results are applied to 
calibrate the cantilevers based on their response to known temperature stimuli. 
 
4
 

ions. The wafer, cantilevers, and anchors are represented by eight-node solid
elements. The gold coating on the cantilever surfaces are represented by four-node 
membrane (shell with one integration point) elements. The boundary conditions are 
(no displacement, no rotation) on the bottom surface of the chip. This will account for 
compliance at the root of the cantilevers.  
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Using this model, various loading conditions can be applied, e.g., fluid interaction, heat 

 
transfer, applied surface traction. Dynamic behavior can then be simulated using the 3D 
nonlinear, implicit finite element code, NIKE3D. The model is sufficiently generalized to
account for variations in geometry, material properties, and initial stress. 
 

 
 

ig. 25:  Finite element mesh of an IBM Zurich Research A1: Water, cantilevers, and 

.2 Finite element model of a single cantilever 

A finite element model was created to focus on the behavior of a single cantilever. 
As in th

s 

Two mechanisms which cause cantilever deflection were studied with the model. 
The fir

 
 
 
 
 
 
 
 
 
 
 
 
 
F
anchor. 
 
4
 

e full array model, the cantilever, anchor, and a portion of the wafer are 
represented by eight-node solid elements. The gold coating on the cantilever is 
represented by four-node plate elements. In this case, only membrane behavior i
captured by using one integration point with the shell elements. 
 

st is temperature-dependent thermal expansion. The cantilever deflects in the same 
fashion as bi-metallic beams. As the temperature changes, the silicon and gold expand at 
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different rates (as described by the thermal expansion coefficient). This causes a stress in 
the beam resulting in a deflected equilibrium shape.  
 

The second mechanism is a chemically induced stress which also causes the 
cantilever to deflect to maintain equilibrium. Chemical adsorption/desorption in the gold 
layer causes a change in the free energy of the gold layer. This results in an applied 
traction to the top surface of the silicon cantilever. To maintain static equilibrium the 
cantilever must change its shape. Due to the beam-like geometry of the cantilever, the 
deflection is predominately a displacement in the direction normal to the cantilever’s 
surface (z direction in Fig. 26). 
 

This effect cannot be captured directly in the current version of NIKE3D, 
However, it can be included by an equivalent thermal stress in fictitious shell elements. 
Those shell elements are given properties so that they do not contribute to the mass and 
stiffness of the cantilever and that plane stress arises from contributions from thermal 
expansion but not bending, i.e., the thermal expansion coefficient, α, is very large relative 
to the Young’s modulus. From the plane stress equation, 
 
 

Eq. 8                                σxx =
E

1−υ 2 εxx +υεyy( )−
E

1+υ
α∆T   

 
if α is very large, then σxx is dominated by the second term on the right hand side. In 
these equations, E and υ are the Young’s modulus and Poisson’s ratio for Si, 
respectively.  ∆T is the change in temperature.  εxx and εyy are the in-plane strains. 
 

Thermo-elastic material properties (Material Type 4 in NIKE3D) are taken to be 
for silicon: E = 150e9 kg/m3, υ = 0.2, and α= 4.2e-6 / K and for gold: E = 80e9 kg/m3, υ 
= 0.42, and α= 14.2e-6 / K. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 26:  Finite element mesh of a single cantilever. 
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Fig. 27:  Example of the deflection shape of a single cantilever under loading. Contours 
are of displacement in the normal (z) direction. 
 
4.3  Analytical relationships  
 
4.3.1 Deflection of a bi-metallic cantilever due to a change in temperature. From Roark 
and Young, ‘Formulas for Stress and Strain,’ Fifth Ed., Sect. 7.2[7], 
 
Eq. 9 

∆ztip

∆T
= 3∆αL2 δAu + δSi

δSi
2k1

 
where ∆ztip is the normal (z-direction) deflection of the free end (tip) of the cantilever, ∆T 
is the temperature difference,  ∆α  is the difference in thermal expansion coefficients 
(αSi − αAu),  L is the cantilever length,  δ is the thickness of the Si or Au, and k1 is 
 

k1 = 4 + 6
δAu

δSi

+ 4(
δAu

δ Si

)2 +
EAu

ESi

(1−ν Si)
(1−νAu )

(
δAu

δSi

)3 +
ESi

EAu

(1−ν Au)
(1−ν Si)

(
δSi

δAu

)

 
where E is Young’s modulus for Si or Au and υ is Poisson’s ratio for Si or Au. Note the 
Poisson effect has been included in k1. 
 
4.3.2 Deflection of a cantilever beam from a resultant surface stress. A modified version 
of Stoney’s equation (applies free-free beam), which accounts for the fixed end boundary 
condition, comes from, Sader [8]. 
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Eq. 10 
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and 
 

( ) ( )( )[ ]υυυτ 3211015322,1 −−−= m  
 

In these equations, ∆σ  is the surface stress (J/m^2 or N/m), δ is the thickness of 
the Si cantilever, L is the length of the cantilever, E is Young’s modulus of Si, υ is 
Poisson’s ratio for Si, ∆z is the normal (z-direction) deflection of the free end (tip) of the 
cantilever, X = x/L = 1 is the normalized length, and B = w/L is the normalized width of 
the cantilever. Note that ∆σ, surface stress, is related to the surface stress energy per unit 
area for this cantilever geometry.  (For details, see W. Haiss, [9]) 
 
K is the correction factor for Stoney’s equation. For the case, L = 500 microns, w = 100 
microns, and t = 1 micron, K = 1.04 
 
4.3.3 Spring stiffness. A cantilever beam can be characterized by a ‘spring stiffness’ 
analogous to a one-degree-of-freedom mass/spring oscillator. The deflected shape 
corresponds to the first mode of vibration, 
 

Eq. 11                                                   
3

4
⎟
⎠
⎞

⎜
⎝
⎛=

L
Ewk δ  

 
where E is Young’s modulus, w is the width, δ is the thickness, and L is the length. The 
moment of inertia of the cantilever with respect to the normal direction (often seen in 
literature) is  
 

Eq. 12                                                      3

12
1 δwI =  

 
4.3.4 Deflected shape of the cantilever. The normal displacement at any point along the 
cantilever is 
 

Eq.  13                          ( )LxLxx
Ew

fxz 46
2

)( 222
3 −+=

δ
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where x is the position along the cantilever (x=0 is the fixed end. x=L is the free end). It 
is assumed that the cantilever is subject to a uniform loading, f (force/length). 
 

The ratio of displacement at any point on the cantilever with respect to tip 
displacement is then 
 

Eq. 14                                       
z(x)

ztip (L)
=

x 2 x2 + 6L2 − 4Lx( )
3L4  

 
This relationship can be used when the measurement point is not located at the tip of the 
cantilever. For example, given a 500 micron cantilever, the displacement at a point 355 
microns from the free end is 61.57% of the tip displacement. 
 
4.4 Finite element calculations vs. analytical relationships  
 
The following section uses the material properties values: Silicon: E = 150e9 Pa, 
υ = 0.2,  δ =  1.0e-6 m, L = 500.e-6 m, α = 4.2e-6 / C.  Gold: E = 80e9 Pa, υ = 0.42,  δ =  
20e-9 m, L = 500.e-6 m, α = 14.2e-6 / C. 
 

Consider tip deflection due to temperature difference:  the analytical expression in 
Section 4.3.1 yields ∆z / ∆T = 103 nm/K. From the finite element model, ∆z / ∆T = 111 
nm/K.   The analytical relationship is one dimensional. It does not take into account 
shortening in the axial direction. The finite element model does capture this effect. Figure 
28 shows the corresponding amount of shortening in the axial direction for a 10 degree 
temperature increase. 
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Fig. 28:  Vertical displacement vs. temperature increase. Red: finite element model. Blue: 
analytical relation. 
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Fig. 29:  Axial displacement vs. temperature increase from finite element model. The 
axial displacement is two orders of magnitude smaller than the vertical displacement. 
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4.5  Calibration of cantilevers using temperature-deflection-determined spring constant  
 

Material, geometric, and manufacturing (i.e., residual stress) variations in the 
cantilevers cause variations in mechanical response. Experimental measurements show 
that individual cantilevers respond to a given temperature change with varying 
displacement. We have attempted to characterize these variations through the spring 
constant (implemented for the purposes of our calculations in the Young’s modulus) of 
each cantilever.  
 

Experimentally, a known temperature increase in measured along with the 
corresponding cantilever displacement. Using the relationship in Section 4.3.1, a 
corresponding spring constant, k, and a Young’s modulus, E, can be calculated.  The 
ideal value of dz / dT is 104 nm/K which corresponds k = 30 nN/m. 
 
 
 

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

Temperature Difference (K)

V
er

tic
al

 D
ef

le
ct

io
n 

(n
m

)

E = 200 GPa: dz/dT = 73 nm/K

E =150 GPa: dz/dT = 96 nm/K

E = 100 GPa: dz/dT = 140 nm/K

E = 50 GPa: dz/dT = 261 nm/K
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 30:  Vertical displacement vs. temperature increase from four experimental 
measurements. For each dz / dT, an experimentally determined E is calculated. 
 

An example of temperature vs. deflection data for eight cantilevers is shown in 
Fig. 31. A least-squares-fit line was used to estimate dz/dT for each lever. Then using the 
relationships in Sections 4.3.1 and 4.3.3, the corresponding spring constants were 
determined for each lever. The values ranged from 12.2 mN/m to 13.4 mN/m. 
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Fig. 31:  Vertical displacement vs. temperature increase from a single temperature pulse.  
Displacement response of eight cantilevers. Spring stiffnesses varied from 12.2 mN/m to 
13.4 mN/m. 
 
 

As an example, consider the data shown in Fig. 19.  Here, we can fit to get the 
appropriate adsorption parameters. Furthermore, we also built in the cantilever response 
to thermal effects, or coefficient of thermal expansion effects. To estimate the 
contribution of CTE, we use Eq. 9 and find that ∆z/∆T approximately equals 98 nm/K. 
 

The deflection, ∆z, is a function of material properties and temperature of the 
system. This estimate was based on literature values for material properties, and later in 
the project, the estimate was refined through temperature calibration experiments for each 
cantilever in the array. With all of these features built into the model based signal 
processing software, with fit parameters, we now have a capability to find a signal, with 
the appropriate features that our target species would produce, that is buried in non-signal 
or noise.  
 
5.  Model-based signal processing of cantilever signals 
 
This section describes model-based processing, and how it is applied to achieve an 
enhanced signal for the cantilever array in a chemical detection problem. 
 
5.1  Model-based signal processing approach  
 
 The model-based approach is “incorporating mathematical models of both 
physical phenomenology and the measurement process (including noise) into the 
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processor to extract the desired information.” This approach provides a mechanism to 
incorporate knowledge of the underlying physics or dynamics in the form of 
mathematical process models (along with measurement system models and 
accompanying noise as well, as model uncertainties) directly into the resulting processor. 
In this way, the model-based processor enables the interpretation of results directly in 
terms of the problem physics.  The model-based processor is actually a modeler's tool 
enabling the incorporation of any a priori information about the problem to extract the 
desired information. 
 

The fidelity of the model incorporated into the processor determines the 
complexity of the model-based processor with the ultimate goal of increasing the inherent 
signal-to-noise ratio (SNR).  These models can range from simple, implicit, non-physical 
representations of the measurement data such as the Fourier or wavelet transforms to 
parametric black-box models used for data prediction, to lumped mathematical 
representations characterized by ordinary differential equations, to distributed 
representations characterized by partial differential equation models to capture the 
underlying physics of the process under investigation. The dominating factor of which 
model is the most appropriate is usually determined by how severe the measurements are 
contaminated with noise and the underlying uncertainties.  If the SNR of the 
measurements is high, then simple non-physical techniques can be used to extract the 
desired information; however, for low SNR measurements more and more of the physics 
and instrumentation must be incorporated for the extraction. 
 

This paper is concerned with the novel development and application of model-
based signal processing to micro-machined cantilever sensor arrays. We will first 
functionally describe the generic approach in terms of the cantilever system and then we 
will develop the cantilever and associated mathematics more specifically eventually 
developing a first-cut design based on these models. The overall approach captures all 
possible models in terms of nonlinear differential equation models with the one described 
specifically an embellishment of the model-based approach. 
 
We briefly describe the generic model-based approach to the cantilever array problem as 
depicted in Fig. 32.  The movement of cantilevers is influenced by three major factors: 
chemical binding, temperature effects and fluidic forces. We will assume in this 
formulation that the temperature dynamics are relatively slow.  Therefore, the changes in 
temperature can simply be modeled by a time-varying polynomial. Fluidic disturbances 
act more quickly, and can be described by the linear Stokes equations of motion. As a 
result, one can also solve the fluids problem separately.  The resulting predicted stress 
can be superimposed over stresses due to temperature and chemical effects. Chemical 
reactions at the cantilever surface act over tens of seconds to many minutes, and represent 
the signal of interest.  The entire process is contaminated with both measurement and 
process noise, which decreases the overall signal-to-noise ratio (SNR) and makes this 
invention so important. The poor signal levels can be enhanced by incorporating 
mathematical models of the underlying physics and measurements including the noise 
statistics into the processor to produce an enhanced signal (deflection) with a much 
higher SNR. 
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Fig. 32:  Generic Model-Based Processing for Cantilever Sensor Arrays.  
 

Mathematically, the time-dependent differential surface stress, σ(t), on each 
cantilever is a function of the surface concentration given by ( )tΓ , which is in turn 
parameterized by the maximum possible surface concentration, maxΓ , and the initial 
target molecule concentration c0 and time-dependent target concentration c(t) in solution. 
The time rate of change of the surface concentration, ( )tΓ , can be expressed as 
 

Eq. 15 ,  0 max( ) [ ( ), , ( ), , , ] ( )a dt f t c c t k k w t
•

ΓΓ = Γ Γ +
 
where w(t) is time-dependent process noise, assumed to be Gaussian, and all other terms 
are as defined above. 
 

The change in a cantilever’s’ surface free energy, ∆G(t), is related to the surface 
concentration and the target molecule concentration in solution by 
 
Eq. 16   ( ) [ ( ), ( ), ( ), , ]G aG t f t C t t k k∆∆ = Γ Τ d

 
where  is the time-dependent temperature. The differential surface stress is a function 
of the change in free energy and surface concentration by 

( )tΤ

 
Eq. 17 ( ) [ ( ), ( )]t f G t tσσ ∆∆ = ∆ Γ   
 

With this underlying physical phenomenology we can now express the deflection 
at the ith cantilever as a function of both surface concentration and induced surface stress 
as  
 
Eq. 18 ( ) [ ( ), ( )]i z i iz t f t tσ∆∆ = ∆ Γ   
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Here we assume that the differential surface stress and as the surface concentration are 
variable. The actual measurement is somewhat more complicated due to instrumentation 
noise  as well as disturbances ( )v t ( )tδ such as systematic errors, temperature drifts and 
just trends. Therefore, we define the cantilever array deflection measurement at the ith 
lever as 
 
Eq. 19 ( )( ) , , ( )

ii d i i i id t f z v tα δ= ∆ +   
 
with iα  a gain or attenuation assumed constant.  In this characterization, we also assume 
that the additive noise processes are zero-mean and Gaussian. This representation can be 
further parameterized in terms of an approximate Gauss-Markov model with nonlinear 
dynamics and algebraic equations. We will discuss this subsequently. This completes the 
generic description of the system cast into the model-based framework, next we define 
some more specific representations based on the underlying phenomenology. 
 

 36



 
5.2  Model-based processor design for cantilever arrays 
 

In this section we develop the model-based approach first for the generic model 
sets and then for the specific embellishment discussed previously.  We start the section 
with the development of an approximate Gauss-Markov model, which can be used to 
capture the cantilever signal enhancement problem and then specifically apply it to the 
micro-cantilever array sensor system.  
 

If we have nonlinear dynamics (differential equations) describing the system 
under investigation, then an approximate representation of the deterministic process and 
associated measurement is easily captured in state-space form. State-space is simply 
converting an nth-order set of coupled differential equations into an equivalent set of n-
first order differential equations. With this accomplished, we obtain the general nonlinear 
vector functional relations defined by the process and measurement models, 
 

Eq. 20 

[ ]

[ ]

( ) , ;                                                 [state]

( ) , ;                                                [measurement]

x t a x u

y t c x u

θ

θ

=

=

&

  

where x  is the xN -dimensional state vector; is the -dimensional measurement. If 
these processes are contaminated by additive zero-mean, Gaussian noise processes then 
the approximate Gauss-Markov model evolves as 

y yN

 

Eq. 21 

[ ]

[ ]

( ) , ; +w(t)                                               [process (state)]

( ) , ; +v(t)                                                [measurement]

x t a x u

y t c x u

θ

θ

=

=

&

  

Here  are the [ ],  c[ ]a ⋅ ⋅ xN -dimensional vector process function and -dimensional 
measurement functions, respectively, for the process noise given by  and 
the corresponding measurement noise as . 

yN
~ (0, )www N R

~ (0, )vvv N R ( , )N ⋅ ⋅  is the Gaussian 
distribution specified by mean and covariance. With this representation in mind, we can 
now define the cantilever signal enhancement problem as: 
 
 
GIVEN a set of noisy displacement measurements, { }( )y t with known inputs, { }( )u t and 

parameters, { }θ specified by the approximate Gauss-Markov model of  Eq. 21,  FIND the 
best (minimum error variance) estimate of the displacement and surface concentrations, 

, respectively.  ˆ ˆ( ),  x(t)y t
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The solution to this problem can be derived in a wide variety of approaches.  Here, we 
will use the common Bayesian approach[10].  We summarize the algorithm as: 
 

Eq. 22    

[ ]

[ ]

                        MODEL-BASED PROCESSOR ALGORITHM

ˆ ˆ( | 1) , ;                                               [State Prediction]

ˆ ˆ( | 1) , ;                                               

x t t a x u

y t t c x u

θ

θ

− =

− =

&

[Measurement Prediction]

ˆ( ) ( ) ( | 1)                                           [Innovation or Residual] 

ˆ ˆ( | ) ( | 1) ( ) ( )                                  [Correction]

t y t y t t

x t t x t t K t t

ε

ε

= − −

= − +

where  is the gain of the processor, which must be calculated from the underlying 
process statistics (see Candy, Signal Processing:  The Model Based Approach 
(1986)[10]) for details. 

( )K t

 
For the micro-cantilever array problem, we must convert the physical relations, 

that is, Eqs. 2-4 into the state-space form above. We chose to solve the differential 
equation and incorporate the resulting relations into the measurement model. For the state 
we modeled the free energy as a piecewise constant function, converted it to discrete-time 
using the first difference approximation and excite it with zero-mean, white Gaussian 
(process) noise creating a random walk model for this parameter. Therefore, we start with 
defining the state vector as, :x G= ∆  and the measurement, :y d= , then we obtain the 
following relations. From Eq. 22, the surface concentration relation becomes 
 
 
 
Eq. 23 ( ) ( 1) [ ; ]            [Process Model]x t x t a x θ= − →   
 
 
Now the measurement model is tricky. We must first solve for the physical variables to 
obtain the generic form of Eq. 21; therefore, we have from Eqs. 2-4 that 
 
 
Eq. 24 ( ) ( ) ( ) [ , ; ]       [Measurement Model]y t d t t c x uτ θ= + →l l   
 
 
The dynamic surface concentration, Γ(t) for adsorption-desorption and pure desorption 
processes that were used have the following form:  
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Eq. 25      
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⎛ ⎞
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=

t

, and tON denotes when the signal is introduced and 

tOff denotes when the signal is turned off. 
 
As described above, the differential surface stress on the cantilever is a function of the 
surface concentration and free energy 
 
Eq. 26                                1( ) ( ) ( ) ( ) ( )t t G t M t xσ −∆ = Γ ∆ = Γ
 
Therefore the deflection of the -lever is weighted by the Stoney equation with a 
specific modulus of the individual lever, that is, 

thl

 

Eq. 27 
23( ) ( )   for    : (1 )Ld t t

E
α σ α

δ
= ∆ = −l l l

l

ν   

 
where αl is the Stoney equation with cantilever modulus, , with lever length and 
thickness, 

thl El

,  L δ , respectively and ν is Poisson’s ratio for silicon.  Thus, we obtain the 
measurement equation at the -cantilever as thl
 
 
Eq. 28 ( ) ( ) ( ) ( )   for   ( ) : ( )y t t x t t t tζ τ ζ α= + =l l l lΓ   
 
and ( )tτ is the known temperature profile (low-pass filtered). Finally, assuming that both 
noise sources are Gaussian random processes (as before), then the result is a time-varying 
Gauss-Markov (not approximate due to linearity) multi-channel cantilever model defined 
by 
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Eq. 29 

( ) ( 1) ( 1)

( ) ( ) ( ) ( ) ( )

x t x t w t

y t t x t t v tζ τ

= − + −

= + +l l l

  

 
for ; . Then as before, we can develop the model-based 
processor based on this Gauss-Markov model. First, we define the signal enhancement 
problem in terms of the cantilever models as: 

~ (0, )www N R ~ (0, )vvv N R

 
GIVEN a set of noisy -vector displacement measurements, yN { }( )ty with known 

-vector inputs, {uN }( )tu and parameters, { }kθ specified by the Gauss-Markov 
model of  Eq. 27,  FIND the best (minimum error variance) estimate of the 
displacement and -vector surface concentrations, xN ˆ ˆ( | 1),  ( | )t t t t−y x , 
respectively.  

 
The model-based algorithm to solve this problem using the specified models is: 
 
Eq. 30 
 

   

              CANTILEVER ARRAY MODEL-BASED PROCESSOR ALGORITHM

ˆ ˆ( | 1)  ( 1| 1)                                               [Surface Concentration Prediction]

ˆ ˆ ˆ( | 1) ( ) ( | 1) ( )   

t t t t

t t t t t tζ τ

− = − −

− = − +

x x

y xl l

&

                               [Displacement Prediction]

ˆ( ) ( ) ( | 1)                                               [Innovation or Residual] 

ˆ ˆ( | ) ( | 1) ( ) ( )                        

t t t t

t t t t t t

= − −

= − +

ε y y

x x k ε

l l l

                 [Surface Concentration Correction]

 
 

This completes the development of the MBP algorithm for Cantilever Sensor 
Arrays. Note that once this framework is developed, it is quite easy to define other 
problems of high interest (e.g. detection problems [11]).  
 
5.3  Model-based processor performance evaluation 
 

In this section we discuss the performance of the model-based processor (MBP) 
for signal enhancement of an L-element cantilever sensor array. The basic approach we 
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take for MBP performance evaluation is illustrated in Fig. 33. After obtaining the average 
parameters by performing the parameter estimation, a Gauss-Markov simulation was 
designed to generate synthesized cantilever deflection measurements using the model 
discussed in the previous section. Once synthesized at a particular signal-to-noise ratio 
(SNR), the processors were applied to the data and their performance analyzed based on 
the “truth” deflections generated by a noise-free simulation. Performance metrics are 
applied to evaluate and compare performance. We discuss the various steps in this 
procedure. 
 

Parameter Estimation 
 

The basic approach we use is to first “parameterize” the cantilever array model by 
performing parameter estimation∇ on the raw deflection measurements to extract the 
critical absorption, desorption and maximum concentration, that is, 

{ }( ), ( ), ( ) ; 1, ,a dk k Gθ = ∆ =l l l l l L L

t

. The parameter estimator we employed was a 
nonlinear least-squares criterion using the Nelder-Meade polytope search algorithm [12]. 
This algorithm is based on minimizing 
 

Eq. 31                   2

1

ˆmin  ( ) ( ; )   for   ( ; ) : ( ) ( ; )
tN

t
J t t y t y

θ
θ ε θ ε θ θ

=

= =∑
l

l l − l ,  

 
where the estimated or filtered cantilever measurement at the -lever is given by thl
 
Eq. 32 ˆˆ ( ; ) ( ; ) ( )y t d t tθ θ τ= +l l .  
 
Once these parameters are extracted from the data, they are averaged to give, 

{ }, ,a d maxk k γ=θ . These are the parameters that are used in the Gauss-Markov simulation 

model.  
 
 We ran this parameter estimator on raw experimental deflection data and 
estimated the parameters for each lever. The results are shown in Fig. 34 where we see 
the “fitted” deflection responses compared to the measured. It is clear that the extracted 
parameters reasonably predict the filtered cantilever response of Eq. 31. Next we 
investigate the development of the simulator. 

 
 

                                                 
∇ We used a nonlinear least-squares algorithm in MATLAB to estimate the parameters. 
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Fig. 33:  Model-Based Processor Performance Evaluation: Simulation, Processing and 
Analysis. 
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Fig. 34:  Parameter Estimator Results: Predicted response (solid line) compared to raw 
deflection measurements (dotted line).  Note:  C0 is 1.4E-2 M, mercaptoethanol in water, 
for this experiment. 
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Table 2. Cantilever Parameter Estimation  
for 1.4 E-2 M Mercaptoethanol in Water 

 
Cantilever ka (M-1sec-1) kd (10-4) (sec-1) Γmax(1015)  

No. 1 0.333555 5.1484 1.27565 
No. 2 0.329629 5.5826 1.32083 
No. 3 0.319429 4.3686 1.35710 
No. 4 0.329063 4.7588 1.26563 
No. 5 0.310646 4.4155 1.21784 
No. 6 0.342959 4.7652 1.16820 

    
AVERAGE 0.32755 4.8398 1.26751 

    
 
For comparison: ka is 1.3E-2 M-1 sec-1 for 1 mM CH3 (CH2)15 S/Au in ethanol [13].  ∆G = 
-RT Ln (ka/kd) = -24E3 J for this system; for 718 base pair thiolated DNA, ∆G = -34.6E3 
J [4]. Γmax = 1.3E13 for 20-mer DNA [14]. 
 
 

Gauss-Markov Model Simulation 
 
 
For our problem we chose to use ( )G t∆ as an unknown but constant parameter 

( ) and the nonlinear deflection and known temperature measurement, that is, 
defining 

( )G t∆ =& 0

 
Eq. 33   ( ) ( 1) ( 1)G t G t w t∆ = ∆ − + −
 
with cantilever array measurement 
 
Eq. 34 ( ) ( ) ( ) ( )y t d t t v tτ= + +l l l   
 
where  is the free energy at the surface, is the displacement of the -lever, ( )G t∆ dl

thl τ  
is the temperature of the fluid medium and are the additive, zero-mean, Gaussian 
noise processes with covariances, 

,  w vl
wwR  and L L

vvR ×∈ R  with diagonals, 
. We assume that the measurement uncertainty is uncorrelated 

producing the diagonal matrix. Each of the cantilevers has a different modulus associated 
with its structure creating a set of Stoney equation parameters, 

2 ( );   1, ,v Lσ =l l L

α α→ l , one representing 
each of the individual lever dynamics. A typical set of cantilever simulation data is 
shown in Fig. 35 where we used a –20 dB SNR defined by 
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Eq. 35 
2

2

( ) ;   1, ,
( )

Dtrue

v

SNR Lσ
σ

= =l

l
l L

l
  

 
where  is the “true” deflection available from the Gauss-Markov simulation and trueD

2
Dtrueσ  is its variance. Once the noisy deflection measurements are synthesized, then the 

processors are applied to extract the “true” deflections. We chose to evaluate two 
methods: (i) smoothing processor; and (2) model-based processor. The smoothing 
processor is simply a running window average that is equivalent to a low-pass filtering 
operation. This is an example of a typical approach taken by scientists in this field. The 
MBP is the “optimal” (approximately) solution to this problem. Note that we used the 
third party toolbox, SSPACK_PC, a commercial model-based signal processing 
package[15]. 
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Fig. 35:  Noisy Cantilever Deflection Measurement Gauss Markov Simulation (-20 dB 
SNR). 
 
Model-Based Processor Design 

 
The MBP was developed using the cantilever measurement model of Eq. 34 with 

the average parameter estimates of Table 2. In this section we discuss the application of 
the MBP to simulated cantilever array measurement data at a variety of SNRs. We first 
show the results of the MBP design for the –20 dB SNR case and then summarize the 
results at a variety of SNRs to evaluate its overall performance. Note that even though the 
data were simulated using the recorded temperature, it was removed (subtracted) from the 
final estimates in calculating the corresponding error statistics. The MBP design 
discussed is based not only on the average parameter estimates (see Table 3), but also 
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using a smoothed temperature data estimate, ˆ( )tτ , to be more realistic in performance 
evaluation. We expect this processor to provide an outstanding performance, once tuned 
[10]. In fact, the results of applying to be –20 dB data indicating an approximate optimal 
performance, since the underlying prediction errors or innovations associated with each 
lever are statistically zero-mean and white as shown in Fig. 36 and Table 3. Table 3 also 
shows the aggregated weighted-sum squared residual (WSSR) statistic indicating optimal 
performance. The results of processing the –20 dB SNR deflection data are shown in Fig. 
37 for each lever. The results are shown by comparing the “true” (synthesized) deflection 
compared to the smoothed and MBP estimates. It is clear from the figure that the MBP 
performs extremely well. 
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Fig. 36:  Optimality Tests: Cantilever Array Zero-Mean/Whiteness and WSSR Statistic. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 45



Table 3.  MBP Optimality Zero-Mean/Whiteness Test Results 
 

Cantilever Mean Bound Whiteness (% out) Pass/Fail 
No. 1 7.64 16.7 4.25 P 
No. 2 7.81 16.6 4.48 P 
No. 3 11.6 16.9 4.39 P 
No. 4 8.98 16.5 3.59 P 
No. 5 1.93 16.8 4.51 P 
No. 6 4.16 16.6 4.34 P 

     
WSSR   < Threshold P 
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Fig. 37:  MBP and Smoother Enhancement of the Noisy (-20 dB SNR) Synthesized 
Deflection Measurements: True Deflection (with temperature data), Smoothed and MBP 
Estimates. 
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 Next we investigate the overall performance of both the standard 
smoother/averager and the MBP on synthesized data sets. In order to quantitatively 
evaluate the performance of the processors individually we calculate the residual 
deflection errors defined by 
 
Eq. 36 ,  ˆ( ) : ( ) ( )trued t d t d t= −

ll
%

l

 
where is the true (noise free) deflection at the -lever and is the filtered or 
estimated deflections as shown for the –20 dB case in Fig. 37. Once the error is estimated 
at each lever then its associated statistics mean and variance can be calculated and used 
for further analysis. We define the processor output gain as the final metric given by 

trued
l

thl d̂l

 

Eq. 37 
2

2

( )
( ) : ;   =1, ,L

( )
trued

out
d

SNR
σ
σ

=
%

l
l l

l
L .  

 
This ratio represents the enhancement provided by each processor. The smaller the 
residual error variance ( 2

dσ % ), the higher the , providing a reasonable metric. 
Averaging these statistics over the cantilever array gives a “feel” for overall processing 
gain. 

outSNR

 
 We performed a set of simulations at 0, -20, -40 dB SNRin with the typical run 
outputs shown in the previous figures for the –20 dB case. The results for each run are 
summarized in Table 4. Here we see that output SNR produced by both processors are 
respectable with a significant gain in enhancement; however, it is clear that the MBP 
consistently demonstrates superior performance with an overall average enhancement of 
80 dB and enhancement gain over the Smoother of 38, 43 and 60 dB, respectively. The 
MBP is insensitive at these SNRs to the measurement noise variance changes yielding 
identical performance at each level. By contrast, the Smoother performance clearly 
deteriorates as the input SNR decreases. The MBP performance will also deteriorate with 
decreases in input SNR, but not at realistic experimental levels. This demonstrates 
outstanding performance for multi-channel cantilever arrays on these simulated data sets. 
Next we apply the process to the measured array data. 
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Table 4. MBP/Smoother Performance Analysis 
 
SNRin(dB) 0 0 -20 -20 -40 -40 
Cantilever SNRo(Smt) SNRo(MBP) SNRo(Smt) SNRo(MBP) SNRo(Smt) SNRo(MBP)

       
No. 1 44.0083 79.9439 36.5903 79.9439 17.6070 79.9440 
No. 2 46.0711 87.2620 40.2018 87.2620 26.3940 87.2620 
No. 3 44.9283 83.3775 44.5746 83.3775 23.5760 83.3770 
No. 4 45.2004 80.3783 37.9417 80.3783 17.3240 80.3780 
No. 5 44.8704 83.8749 39.8227 83.8749 22.9630 83.8750 
No. 6 45.9690 82.4926 40.0839 82.4926 24.0330 82.4930 

       
AVG 45.1746 82.8882 39.8691 82.8882 21.983 82.888 

AvgGain  +37.7136  + 43.0191  +60.905 
 
 
5.4 Model-based processor application to multichannel cantilever data 
 
 In this section we developed MBP for two cases: (1) average deflection data and 
an averaged cantilever model; and (2) multi-channel deflection data. First we averaged 
the 6 cantilever deflection data to obtain the average deflection response over the entire 
array and then designed the MBP obtaining the parameter estimates first and then 
applying the processor with those parameters. Next we developed the multi-channel 
processor using the same approach by estimating the individual cantilever parameters, 
taking their average and calculating the appropriate moduli for the multi-channel model. 
In both cases we performed simulations first to develop the optimal MBP. 
 
 The average cantilever model was developed by performing the model-based 
parameter estimation (see Fig. 9c) obtaining the adsorption, desorption and free energy 
and then developing the corresponding Gauss-Markov simulation model and 
corresponding MBP. The raw and simulated data (0 dB) are shown in Fig. 38a and 38b. It 
is clear that the measurement noise severely distorts the desired deflection signal. The 
enhanced MBP output (deflection) enhancement is shown in Fig. 38c along with the 
corresponding optimality tests in 38d where we see that the performance of the processor 
is indeed optimal since the corresponding innovations are zero-mean and white. Next we 
applied the MBP to the actual deflection and temperature profile data shown in Fig. 39a 
and 39b after “tuning” the noise covariance parameters ( vvR ) with the results shown in 
Fig. 39d.  Here we see that the MBP is capable of tracking the averaged cantilever 
deflection data quite well; however, the performance is suboptimal, since the innovation, 
although quite small, are not white. Generally, the MBP performance for this data is quite 
good. 
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Fig. 38:  MBP Design for Simulated Average Cantilever Data (0 dB SNR): (a) True 
measurement. (b) Simulated Gauss-Markov deflection measurement with bounds. (c) 
Enhanced deflection (MBP output). (d) Optimality tests (zero-mean/whiteness) results. 
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Fig. 39:  Average Cantilever MBP Application to Measured Deflection Data. (a) Raw 
deflection data. (b) Raw temperature profile data. (c) Model-based parameter estimation 
fit and parameters. (d) Model-based enhancement including temperature.
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Next we developed the MBP for the multi-channel case using the same model-

based approach: simulation and application. We used the average model parameters 
developed over the entire cantilever array data set using the nonlinear least-squares 
model-based parameter estimator and applied it to the raw cantilever data to investigate 
its performance. We again used the MBP with the free energy as our piecewise constant 
parameter (state) and the nonlinear cantilever array model with 6 elements. We used the 
smoothed estimate of the temperature profile in our estimator as in the synthesized data 
case. We also used the estimated moduli in the Stoney equations as well as the average 
parameter estimates as before. The results are shown in Fig. 40 where we see the raw 
measured cantilever data, MBP estimates and the corresponding errors or innovations. 
Since the innovations are not zero-mean and white, the processor is not optimal; 
however, the results are quite reasonable except for the systematic bias error (constant) in 
the estimate. The dynamics appear to be captured by the model especially in cantilever 5. 
The offset can be adjusted by selecting various combinations of elements in the Rvv 
measurement noise covariance matrix, but this may be better suited to an adaptive 
implementation of the processor which will be pursued in future work. From the figure 
we note that the dynamics of the individual levers (on-set and off-sets) are quite close to 
the expected. This concludes the application to the data. 
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Fig. 40: MBP of Experimental Cantilever Array Data: Raw, Enhanced (MBP) and 
Residual (Innovation) results for each lever. 
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6. Summary 
 

We have developed a successful model-based approach to the micro-cantilever 
array signal enhancement problem. Experimental data were obtained from a multi-
cantilever detection system, then quantitatively analyzed with mathematical tools from 
physical chemistry and solid state physics.  We incorporated the results of this analysis 
directly into the generic signal processing approach. A proof-of-concept solution was 
created to parameterize our theoretical model, enabling us to test an average model. This 
model was then used to develop the MBP for enhancing noisy cantilever measurements. 
We investigated both data averaged over the array and the multi-channel cases.  

 
Through simulations with additive Gaussian noise at SNR of 0, -20, and –40 dB, 

we demonstrated the ability of the processor to extract the cantilever deflection response 
with a large improvement in signal gain (~ 80 dB). We compared the processor to that of 
an “averager” (low-pass filter) comparing their performance. At each of these SNR the 
MBP demonstrated superior performance with an overall average processing gain of ~ 
40-60 dB over the averager. Finally, we applied the MBP to noisy, smoothed (averaged) 
cantilever data and demonstrated that the processor could perform quite well except for a 
bias error, which is easily corrected. 

 
 To demonstrate the full utility of the MBP for chemical sensing of low levels of 
signature chemicals associated with nuclear processing, necessary next steps are (1) 
verify the physical models used in this study for a variety of solvents and target 
molecules (this data has already been obtained as part of this study) (2) make use of 
control levers, and (3) extend the experimental library to include low concentrations of 
chemical targets of practical interest for sensing nuclear processes. 
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7. Appendix A:  Derivation of adsorption and desorption kinetics 
 
In this appendix, a different set of variables is used than was used in previous sections of 
the report.  These parameters are more traditional in the field of kinetics, and so may be 
more familiar to some readers.  In order to compare equations in this appendix with 
equations elsewhere in the report, use the following equivalencies: 
 
ca = Γmax  
Θ = Γ/Γmax 
 
Consider a surface having a finite number of adsorption sites immersed in a gas or 
solution of potential sorbants.  At equilibrium, the rate of sorption and desorption are 
equal:  
 
 ka c0 (1-Θe) = kd ca Θe        (A1) 
 
where kf is the forward rate constant (adsorption), c0 is the solution concentration, Θe is 
the fraction of total adsorption sites occupied at equilibrium for this particular 
concentration, kr is the reverse rate constant (desorption), and ca is the total areal 
concentration of adsorption sites. 
 
Solving for Θ, we obtain the form of the traditional Langmuir isotherm: 
 
  Θe = b c0 / (1+b c0)        (A2) 
 
where  
 
 b = ka / kd ca         (A3) 
 
Ordinarily, b is defined as b0exp(-∆H/RT), where ∆H is the enthalpy of adsorption.  
Using the standard Arrhenius formalism for the k’s, we find 
 
 Aa e-Ea/RT/ ca Ad e-Ed/RT = b0e-∆H/RT      (A4) 

 
At which point it is obvious that b0 = Af /caAr and ∆H = Ea – Ed.  The Langmuir isotherm 
has the property that equilibrium fractional surface coverage is linear with concentration 
at low concentration and reaches an asymptote of one at high concentration.  Also note 
that the fractional coverage as a function of concentration is a function of temperature. 
 
Now consider the rate of change in surface coverage away from equilibrium.  The net 
change in fractional surface coverage is the difference between the forward and reverse 
rates: 
 
 dΘ/dt =  ka c0 (1-Θ) – kd ca Θ       (A5) 
 

 52



Note that the net rate approaches zero as the surface concentration approaches its 
equilibrium value, when the forward and reverse rates by definition must become equal.  
This implies that one can neglect desorption when deriving ka only for very low surface 
coverages.  One can factor the equation to get a relationship describing the rate as a 
function of the distance from equilibrium: 
 
 dΘ/dt =  kac0(1-Θ- Θ/bc0) = kac0(1-Θ (1+1/bcs)) = kac0(1-Θ (bc0+1)/bc0) (A6) 
 
Comparing to Eq. A2, we find 
 
 dΘ/dt =  ka c0 (1-Θ/Θe)       (A7) 
 
The rate goes to zero when Θ = Θe.  Although Eq. A7 is factored to approach equilibrium 
from the adsorption side, one can also factor Eq. A5 to approach equilibrium from the 
desorption side: 
 
 dΘ/dt =  kd ca (-Θ +(1-Θ)bc0)        (A8) 
 
If c0 = 0, one gets the trivial result that  
 
 dΘ/dt =  -kd ca Θ                     (A9) 
 
Note that all adsorption terms have fallen out automatically.  Now consider the case 
where the concentration has been reduced (but not eliminated) so that the surface 
coverage is above its equilibrium value.  The resulting approach to the new equilibrium 
value is given by 
 
 dΘ/dt =  kdcabc0 (1-Θ(1+bc0)/bc0) = kdcabc0 (1-Θ/Θe)   (A10) 
 
Note that dΘ/dt is negative in this form because Θ/Θe is greater than one.  One can 
eliminate bc0 in favor of Θe by first inverting Eq. A2 to give 
 
 bc0 = Θe/(1-Θe)        (A11) 
 
and then substituting Eq. A11 into the next to last equality, giving 
 
 dΘ/dt = kdca (1-Θ/Θe) Θe/(1-Θe) = -kdca (Θ-Θe)/(1-Θe)    (A12) 
 
One observes an effective first-order desorption rate constant equal to the zero-
concentration value divided by the factor (1-Θe). 
 
Now consider the case where the apparent desorption order is not unity, which we 
observed for our gold-thiol system.  This could be due to a difference in absorption 
energies for different sites, which would cause the activation energy and desorption rate 
constants to be different (Figure A1). 
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We have shown previously [16] that a distribution of activation energies yields a 
deceleratory reaction that can be fitted well with an nth-order reaction having n>1.  
Formally, an nth-order reaction corresponds to a gamma distribution of frequency factors, 
but distributions of frequency factors and activation energies are difficult to distinguish 
over narrow temperature ranges.  An important feature of the model in Figure A1 is that 
the non-unity reaction order would be observed only in the desorption direction, because 
the adsorption direction is characterized by a single activation energy. 
 
 

Ef

∆H

reaction coordinate →

Er,i

Ef

∆H

reaction coordinate →

Er,i

 
Figure A1.  Conceptual model giving a distribution of reaction constants for desorption, 
which is reflected in an effective reaction order greater than one. 
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